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The Solution of Guided Waves in Inhomogeneous
Anisotropic Media by Perturbation and
Variational Methods

G. J. GABRIEL, STUDENT MEMBER, IEEE, AND M. E. BRODWIN, MEMBER, IEEE

Abstract—The Schroedinger perturbation theory is extended to
the boundary value problems of guided electromagnetic waves in
cylindrical structures containing inhomogeneous, anisotropic, dis-
sipative media. A general variational principle, which reduces to
existing restricted forms valid for nondissipative media, is also
formulated. These approximation methods evolve in a unified man-
ner from the eigenvalue formulation of Maxwell’s equations wherein
the wave numbers are the eigenvalues of a linear operator. The
properties of the media are restricted only by the requirement that
they be independent of the axial coordinate. Perturbation of the
backward wave is considered and the condition for nonreciprocal
waveguides is stated. Modification of the perturbation method for
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application to gyrotropic media is outlined and it is indicated that
convergence of the perturbation terms is improved in those media,
such as the plasma and semiconductor, which permit a Taylor ex-
pansion of the susceptibility tensor in powers of the external field.
Two specific examples, whose exact solutions are known, are in-
cluded to illustrate the application.

I. INnTRODUCTION
THE PROPAGATION of guided electromagnetic

waves in cylindrical structures containing aniso-

tropic, inhomogeneous media poses formidable
boundary value problems, even under simplifying con-
ditions. In recent years, materials which display induced
anisotropy, namely the gyrotropic media, have received
considerable attention. Because of the special form of
the susceptibility tensors of gyrotropic media, when the
external magnetic field is oriented along one of the co-
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ordinate axes, exact analytical treatment of the bound-
ary value problem in a limited number of geometric
configurations is possible [1]-[4]. The resulting eigen-
value equations for the allowed wave numbers, how-
ever, are often too complicated to permit explicit ex-
pression of the roots. Numerical or approximate ana-
lytical methods are then used for determining these
roots.

When the media are inherently inhomogeneous and
anisotropic, without dependence on an external influ-
ence such as the magnetic field, the form of the tensors is
not restricted; and when the media are dissipative, the
tensors are necessarily non-IHermitian. The mathemat-
ical complexity of the problem then increases sub-
stantially. In this general case, an approximate analysis
of the boundary value problem is simpler than exact
solution, if not in fact the only resort. Even in the
special case of gyrotropic media, under certain circum-
stances and especially when the media are dissipative
such as the semiconductor, an approximate analysis
may vield sufficiently accurate results to diminish the
merit of the exact solution.

It is possible to treat inhomogeneity and anisotropy,
induced and inherent, by viewing the presence of the
media as a perturbation of the empty waveguide. The
formulation of the Maxwell equations as an eigenvalue
problem in operator notation, initiated by Bresler,
Joshi, and Marcuvitz [5], [6], enables the extension of
the scalar Schroedinger perturbation theory to problems
of guided waves in cylindrical structures, and permits
the application of the powerful techniques of the spec-
tral theory of operators. A general variational approxi-
mation, which reduces to the restricted form given by
Berk [7] for media possessing Hermitian tensor param-
eters, also follows from the eigenvalue formulation. In
the present perturbation and variational approxima-
tions, no restrictions are imposed except that the per-
meability and permittivity tensor elements be indepen-
dent of the axial coordinate. These elements may, how-
ever, be functions of the coordinates in the transverse
plane.

Section 11 of this paper is concerned with the exten-
sion of the scalar perturbation theory to problems of
guided waves. In Section III the general variational
method is considered. Section IV consists of specific
examples to illustrate the application of the perturba-
tion theory. Under consideration are cylindrical wave-
guides, whose axes coincide with the z axis of an ap-
propriate cylindric coordinate system (u1, #s, 2). The
waveguides are assumed to contain linear, inhomoge-
neous, anisotropic, dissipative media characterized by
the permeability and permittivity tensors (dyadics) u
and e which are independent of z. The walls of the wave-
guides are perfect conductors, and all fields are assumed
to depend on z and the time ¢ through the factor
exp 1(kz—wi).
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II. PERTURBATION THEORY

The underlying principle of the perturbation theory
is that the presence of material media may be regarded
as a perturbation of the empty waveguide, provided the
media cause sufficiently small effects. The theory evolves
in a unified manner from the formulation of the Maxwell
equations as an eigenvalue problem, under the assunmp-
tion of exponential z and ¢ dependence, wherein the
wave numbers are the eigenvalues of a linear operator.
In this formulation [5], the electromagnetic field is char-
acterized by the six-vector function

E,
B, (u1, ug) = [:iHa:I

in terms of which the Maxwell equations take the form

(1

(& — k. I)®, =0 (2)
where
[ we —V: X I:'
L =
vy X I wu
and

0 12 X I
<
1E X I 0

and I is the unit dyad, 2 the unit vector along the z
axis, and V; involves only the transverse coordinates.
Matrix rules of operation are implied, with the provi-
sion that the dot product is used for the product of
dyadics and vectors. The domain of £ is specified by
the boundary conditions imposed on ®, at the guide
walls.

The inhomogeneity and anisotropy of the medium
filling the guide are embodied in the operator £. Since
these properties are conveyed as well by the magnetic
and electric susceptibilities yx,, and x., £ can always be
resolved into

&= &+ L (3)
where £, is the operator corresponding to free space;
i.e.,, w and e in (2) are replaced by wol and €I, and

€0%e 0
L=w[0x :I
0 Mo EKm

It is important to note that L, which is the perturba-
tion operator, is restricted only by the requirement that
it be independent of z. In addition to its dependence on
the transverse coordinates (2, #2), L may also be a func-
tion of a parameter » which accounts for the possible
dependence of the material properties on factors foreign
to the microwave field. For example, in gyrotropic
media, the external magnetic intensity is the parameter
which induces the anisotropy.

With the viewpoint that L is a perturbation on £y, the

(4)
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eigenvectors and eigenvalues of £ differ from those of
£o by small additive terms. Accordingly, we introduce
the “dummy” parameter \, which will aid in the group-
ing of the perturbation terms and which is equated to
unity in the final results; thus

E(u1, s, v) = Lo+ AL{1t1, s, v) (%)
B (11, g, v) = Boo(ths, 1) + D NPan(ttr, 162,%)  (6)
n=1
Ka<V) = Kao + Z )\nKan(V) (7)
n=1

where ®,0 and k.o are the zero-order eigenvectors and
eigenvalues of the unperturbed waveguide. In this nota-
tion, the first subscript identifies the eigenvectors
while the second subscript designates the order of the
perturbation. The conditions under which the perturba-
tion analysis is applicable and the rapidity of conver-
gence of the series (6) and (7) can not be resolved in
general terms. These questions are contingent upon the
extent to which the media alter the homogeneous, iso-
tropic structure and, hence, can be settled only when the
conditions in a particular configuration are known.

The recurrence equations which the perturbation
fields must satisiy are obtained by the usual procedure
of substituting (5), (6), and (7) into (2) and grouping
the coefficients of like powers of A. The first three of
these equations are

(£0 —_ Kaor)q)ao = 0 (8)
(€0 — ko D)Pa1 = — (L — ke I) Pao )
<£0 i KD,()I‘)@‘Q - - (L - Kall‘)fbal —I‘ Kazrq%‘g. (10)

Once a suitable orthonormal zero-order set is con-
structed, ®., and k., can be determined.

A. The Bi-orthogonal Set

In this section, we briefly review the orthogonality
relations of Bresler, Joshi, and Marcuvitz [5] to the
extent needed for the evaluation of the perturbation
terms and for use in the wvariational approximation.
Throughout this paper, the symmetric scalar product of
two six-vectors is defined by

<‘I3al @3) = f (Ea'Elg + iHa‘iHB)dd (11)

where the integration is over the cross section of the
guide.

If ®,7 is the eigenvector of the adjoint operator £7
such that

(&7 + k)P = 0 (12)
then the sets {®.7} and {®;} comprise a bi-orthogonal
set with respect to the “weight” operator TI'; that is,
(BT | Tbg) = Nodog (13)
where N, is the normalization constant and 8.5 is the
Kronecker delta. The adjoint operator is defined by the
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relation
(8707 | &) = (37| £®)

and it is obtained by replacement of wand ¢in (2) with
u? and &7, these being the transposed dyadics. The
analysis has been restricted to guides with perfectly
conducting walls so that the domains of £ and £7 are
identical. The possibility of generalized impedance walls
is discussed in the cited references.

It will be noticed that for every eigenvalue k. associ-
ated with ®,, an eigenvector of &£, there is an eigen-
value —«, associated with ®,7, an eigenvector of £7. A
negative eigenvalue implies a wave traveling in the op-
posite direction. Hence, ®,7 is identified as the back-
ward traveling wave in the “adjoint waveguide,” this
being a waveguide filled with a medium characterized
by the transposed dyadic parameters [8]. In general,
the “adjoint function” ®,7 has no physical meaning,
and it appears in the problem only as a subsidiary set in
terms of which the bi-orthogonality condition is defined.
In gyrotropic media, however, with the external mag-
netic field oriented along a coordinate axis, the trans-
position of the dyadics (tensors) is physically meaning-
ful as this amounts to a reversal of the magnetic field.

It can be shown that a sufficient condition for —«, to
be an eigenvalue of £, when &, is an eigenvalue, is that
the operator be symmetric. In the special case when
£=8,, the symmetric operator of the conventional
waveguide, both +«, are eigenvalues. Then &, reduces
to ®,0 and &,7 to P_,o which are the forward and back-
ward traveling waves, respectively, and are the usual
TE-and TM-type modal functions. The bi-orthogonality
condition then becomes

<¢$a0| F¢150> = i Nasaﬂ- (147)
It is important to note also that
<(I)ia0[ I‘(I)iao> = 0. (15)

By “conventional” waveguide here is meant the empty
waveguide or the waveguide completely filled with a
linear, homogeneous, isotropic, dissipative medium.

Since both +«k, are eigenvalues of £, the complete
spectral functions in a transverse plane are ®,, and
®_,o. The usual expansion of fields in cylindrical wave-
guides takes the following form in the six-vector for-
malism

B (11, Uy, 2) = 2 (0a00* By — G_oe a0’ P _gg). (16)

The coefficients are given by

Bo = e_i"a()zo((b_aol T'e)
ei"ao%(q?aol I'e)

L

where & is evaluated at 2, and the set has been assumed
to be normalized. In the summation (16) a special index
has not been used to distinguish degenerate eigenvec-
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tors. When a g is n-fold degenerate, the index « is
understood to take successively # values for the same
kg. We are now in position to evaluate the perturbation
terms.

B. First- and Second-Order Nondegenerate Perturbation

Only the first- and second-order terms for a non-
degenerate wave modal function are considered. The
extension to degenerate functions is similar to the
methods of quantum mechanical problems and is not
included here. In the unperturbed state, the waveguide
is assumed to sustain only the forward traveling mode
®,0. Because of the completeness of the zero-order set,
the first-order field may be expanded in the series

Ba1 = 2 (ap®Ps0 — a_1P_g0). (17
8

When this is substituted in (9) and the bi-orthogonality

relation (14) is used in conjunction with the fact that

all the ®,, are in the domain of £, the eigenvalue per-

turbation and the coefficients a441 are determined to be

Kol = L—a.cx (18)
L 3.«
agy = ’ B+« (19)
Ke0 — Kgo
Ls,a
a_p1 = - all ,3 (20)
ka0 + Kgo

where
Li,j = <q)10| L@jo).

The coefficient a,: is equated to zero by requiring that
the perturbed eigenvector be normalized to first order
in the parameter [9]. Equation (18) is in agreement
with the viewpoint that, to first order in the nondissipa-
tive medium, the increase in the wave number is pro-
portional to the increase in the stored electromagnetic
energy.

With an expansion similar to (17) for the second-order
term, the following is obtained:

ng, L_ o L—a,——BL s
kp = 3 e 5 e (21)
8 Ka) — Kgo 8 Ka0 + Kgo
P R T N P . e L L
i 8 (Kao e KBO) (KaO - Kyo) B (KaD + Kﬂﬂ) (KD‘O - K'YO)
Lw'y,aLma,a
_ Feval (22)
(kao — Ky0)2
Lysl_g.a Ly slsa
a_yo2 = Zl ! - Z i’
5 (a0 — Kgo) (Kao 7+ Ky0) 5 (ka0 T Ks0) (Kav + Ky0)
L oeL——a,a
ik (23)

B (Kaﬁ + K‘yO)z

where the prime on the summation sign denotes exclu-
sion of the term 8=c.
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The perturbation fields have been expanded in the
zero-order eigenvectors which are similar, but not
identical, to the modal functions of the conventional
waveguide. The zero-order eigenvectors do not consti-
tute modes in the usual sense. In the conventional
guide, each modal solution propagates with a distirnct
wave number independently of all the others. Here, the
ath perturbed eigenvector is a superposition of the field
distributions of the six components of the modal furnc-
tions only insofar as the functional dependence on the
transverse coordinates is concerned.

C. Perturbation of the Backward Wave

Thus far only the perturbation of the forward travel-
ing wave has been considered. When a backward wave
is present the treatment is not altered markedly. Let
the backward wave be

d_, = <I>~a(u1, ug)e_“"az.

Any field that exists in a waveguide must be an eigen-
vector, or combination of eigenvectors, of the operator
£ which properly describes that particular waveguide.
Thus, $_, must be a solution of

&+ ',

24

which differs from (2) in the sign of the eigenvalue.
When the perturbation process is applied to (24), ex-
pressions identical to those for the forward wave are
obtained except that the sign of the index o is changed,
it being understood that k_,o= —Kao.

In general, the wave numbers k,” and &, are not equal.
Waveguides which display this property are commonly
described as nonreciprocal. A necessary condition for
the nonreciprocity is that £ be asymmetrical. The asyn-
metry, however, is not sufficient since the equality
k. =K., may materialize under special circumstances
even when £ and £7 are not equal.

It is interesting to examine the first-order perturba-
tion of x,/. This is given by

0,

(25)

where the signs of the indices in (18) have been changed.
From the definitions of L, ; and the adjoint operator,
we have

[ A
Kal = La,'a

(26)

Thus, the first-order perturbation of the backward
wave number is identical to the perturbation of the for-
ward wave number in the transposed medium. This
similarity to the transposed medium, however, does not
extend to the eigenvectors nor to the higher order per-
turbations of the eigenvalues. This becomes evident by
noting that reversal of the sign of & in (19)—(23) is not
in general equivalent to replacement of L, ; with L, ,T.
We note also that when L is symmetric, then ka1
reduces to Kai.

, T
Kal = L—a,a-
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I1I. VariaTioNaAL METHOD

The variational method is another approximation
technique which follows readily from the eigenvalue
formulation of the Maxwell equations. Berk [7] has
derived for the wave numbers a restricted vector varia-
tional principle, which is valid only when u and ¢ are
Hermitian, thereby excluding dissipative media. Since
£ is necessarily non-Hermitian for dissipative media,
the appropriate general variational principle, which is
obtained from (2) and which is similar to the scalar
form [10], is given by

_ (@7 29)

K= —<‘I’T| Ta) 27

where ®7 is a solution of the transposed (adjoint) equa-
tion. The fact that « is stationary for all ® and ®7 which
are solutions of (2) and (12), respectively, can be veri-
fied by assuming &7 initially to be some ¥ and showing
that the variation of x vanishes only if

(&7 + «I)¥ = 0. (28)

That is, ¥ must be equal to ®7. Furthermore, with the
aid of the general bi-orthogonality relation (13), it is
not difficult to show that k is an upper bound of the low-
est eigenvalue, provided £ is Hermitian. The proof is
inconclusive when £ is not Hermitian.

To prove that the variational expression given by
Berk is contained in the general form (27), we note that
when £ is Hermitian, then £7*=¢ and «*=«; and
since I'*= — T it follows that $7* is a solution of

(£ — k)™ = 0,
Comparison of this with (2) indicates that ®7=@%*,

Hence, when & is Hermitian, the general expression
(27) assumes the form

(o] g@)
*T (et Te)

When written in terms of the components, this expres-
sion appears as

(29)

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

May

K = Ka0 + L—a,a

which is in agreement with (18).

This perturbation formula for the wave number
reduces to that given by Berk for the special case of
nondissipative media having Hermitian ¢ and u
tensors. This may be shown readily by writing L_, . in
terms of the components (E, 7H) and in accordance
with the definition of L;; in (20), and noting that
®_,0=P.0* in nondissipative media.

(32)

IV. APPLICATION

In the analysis of guided electromagnetic waves in
anisotropic, inhomogeneous media, it is convenient to
classify problems into three categories depending on the
nature of the media:

1) Media which are inherently inhomogeneous and
anisotropic; L=L(uy, #2). Examples of these are
the optically active crystals and the homogeneous,
isotropic media partially filling a waveguide.

2) Media which are inherently homogeneous, iso-
tropic but which become anisotropic, and possibly
inhomogeneous, by induction when subjected to
influences foreign to the microwave fields and
characterized by the parameter v; L=L({»). Ex-
amples of these are the gyromagnetic and gyro-
electric media in the field of an external magnet
and completely filling a waveguide.

3) Media which are inhomogeneous and anisotropic
both inherently and by induction; L= L{u, us, v).
An example of these is the gyromagnetic medium
partially filling a waveguide.

Problems in all three categories may be treated by the
approximation methods outlined. In the perturbation
analysis of the special case of induced anisotropy, how-
ever, v may supplant \ as the perturbation parameter,
provided L is a known continuous function of ». Then
the elements of L can be expanded in a Taylor series
about =0,

L= Y vL, (33)
n=1

wf(E*-s-E—l—H*-y-H)da—i—if(H*-VtXE—E*-VtXH)da

K =

f(H*'sz_

which is the formula obtained by Berk.
In the first approximation, the variational and per-
turbation methods lead to identical results for the eigen-
values. This can be verified by putting (27) in the alter-
native form
(@7 £49) + (#7| L8)
(7] Ta)

(1)

As “trial” solutions, the normalized zero-order eigen-
vectors ®,0 and P_,y yield

(30)
E*-£ X H)da

In this case [category 2)], the perturbation theory is
most successful since rapid convergence can be assured
by the simple expediency of maintaining the values of
v within a prescribed upper bound. It is understood that
®,n and k., in (6) and (7) are no longer functions of »,
and that the zero-order eigenfunctions belong to the
filled waveguide but in the absence of the induced
anisotropy or inhomogeneity.

Waveguides which are completely filled with a semi-
conductor or plasma, in the field of an external magnet,
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lend themselves especially to this latter mode of anal-
ysis. Here, the external magnetic field intensity is the
perturbation parameter. Since expressions for the con-
ductivity and susceptibility tensor elements as func-
tions of the magnetic field are available, the Taylor
series (33) can be obtained. This method was applied
to the problem of rectangular waveguide filled with a
semiconductor in a transverse magnetic field. The
results, which are in preparation for publication, are in
excellent agreement with experiment and are much
simpler than the exact solution.

In contradistinction, the waveguide filled with a fer-
rite, although in the same category as the plasma and
the semiconductor case, does not fit this approach very
successfully for two reasons. First, both the external
intensity H, and the internal magnetization M, appear
explicitly in the expressions for the magnetic suscepti-
bility tensor elements. Because of nonlinearity and
hysteresis effects in ferrites, exact analytical relation
between H, and M, is not known. Second, the region
of the B-H characteristics that is of greatest interest in
practice is that of saturation where the field intensity
may be too large to be effectively regarded as a small
perturbation. The evaluation of higher order terms be-
comes necessary, and these progressively increase in
complexity. In the ferrite problems, there appears to be
no advantage in the use of » instead of N as the param-
eter.

We consider now two problems, whose solutions are
known, for the purpose of illustrating the application of
the perturbation method. The conventional E- and H-
type modal functions are employed as the zero-order
orthonormal set. These functions, together with their
respective normalization constants, are listed in the
Appendix for reference.

A. Dielectric Slab in Rectangular Waveguide

As the first example, consider the rectangular wave-
guide with a homogeneous, isotropic dielectric slab sym-
metrically placed in the manner of Fig. 1. This config-
uration falls in the category of inherent inhomogeneity
[category 1)] and accordingly

I 0
L@w=mm{00};am—®5xsam+w.@@

We assume that the fundamental nondegenerate Hy,o
mode is the only one present in the absence of the di-
electric and proceed to evaluate

K@1,0)1 = wE()ngE_(l_o)'El,odd (35)

where E;, is the component of the normalized eigen-
vector. When the appropriate function from the Appen-
dix is introduced and the integration is performed, the
following is obtained:

ko*x ) 1,
K101 = — ‘ l:— 4+ —sin kl,ga—l
2K(1,0)0 Xg K

(36)
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Fig. 1. Geometry of the problem of the isotropic homogeneous di-
electric slab symmetrically placed in rectangular waveguide. An
example of category 1).
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Fig. 2. Geometry of the ferrite phase shifter in rectangular

waveguide. An example of category 3).

where k1 is the cutoff wave number and ko= w~/ueo.
This result, which was obtained by Berk using the vari-
ational method, has been shown by numerical examples
to be in excellent agreement with the exact solution [7].
In that earlier variational approximation, x., was
necessarily assumed to be real, but we assert that such
restriction is not necessary. Complex values of x,, which
account for dissipation, are admissible here.

B. Ferrite Phase Shifter in Rectangular Waveguide

As the second example, consider the rectangular
waveguide with a tranversely magnetized ferrite slab
placed in the manner of Fig. 2. This problem falls in the
category of inherent inhomogeneity with induced aniso-
tropy [category 3)| and, in accordance with the previ-
ous remarks, A is used as the parameter. Thus,

EOXeI 0

]; i<x<dts (37)
0 MoXm

Lo, = o]

where %, for the indicated orientation of the magnetic
field, has the form
l")a 0 ~XZ'|
0

xm =10 0 . (38)
I-XZ 0 x1J

Because of the asymmetries of the susceptibility
tensor and the geometric structure, the waveguide is
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nonreciprocal. The significant quantity of interest is the
differential phase shift as defined by Lax, Button, and
Roth [11], who have analyzed this problem exactly by
numerical methods. To attack the problem with the
perturbation method, we recall that the first-order per-
turbation of the wave number of the backward wave in
a medium is identical to that of the forward wave in the
transposed medium. Thus,

T
AKal = L—a,a - L—a,a-

(39)

It is again assumed that the H;,o mode is the only one
present in the absence of the ferrite, so that (39)
reduces to

Ak1,01 = wuofH_u,o>-(xm — XxmT) Hioda. (40)

Evaluation of the integral yields

2ixs

[cos2 k1,o(8 + d) — cos? kl,od]. (41)

AK(1,o)1 =
Xo

For the sake of comparison, (41) is expanded in a Tay-
lor series about 6=0 the first term of which is

ZiXQ

k1,05 sin 2k1,od. (42)

Ak, = —
%o

This expression differs from the first term of the ex-
pansion obtained from the exact transcendental eigen-
value equation [11] by the factor (1+x;)~'. The ap-
proximation of Lax, et al. [11], is valid for ratios of slab
thickness to waveguide width that do not exceed one
per cent. For greater accuracy, the higher order terms
must be considered, but the evaluation of even the
second-order term is quite involved and it is not in-
cluded here in the interest of brevity.

V. CoNcLUSION

It has been shown that the six-vector eigenvalue for-
mulation of Maxwell’s equations for guided waves en-
ables the development of general perturbation and vari-
ational approximations in a concise and unified man-
ner [13]. These approximations were shown to reduce
to those given by Berk [7] for nondissipative media. A
large number of problems of inhomogeneous, aniso-
tropic, dissipative media can be treated in principle by
these methods; but the accuracy of the results depends
on the conditions in a particular configuration. From
the practical viewpoint, the perturbation method is
cumbersome if terms of order higher than the second
are required. The method is generally more successful
in problems which permit the expansion of the pertur-
bation operator in a Taylor series as in (33).

APPENDIX

A convenient zero-order orthonormal set is con-
structed from the £ and H modal solutions in cylindrical
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waveguides. These may be derived from Hertzian po-
tentials of the £ and H types [12]. For the H type:

I:Ea} _ [iw,roXélPah]
iH,] LiVX VX
awah

(Vt2 + kah2)¢ah = O;
on

= 0 on boundary.

The normalization condition requires that

[P

ZwMoKahkah2
where
kah2 = w2u060 -~ Kah2~

For the E type:

[E] _ [vxvxzwae}
iH, B wea VX Eue

(Ve + ko) = 0; Ya. = 0 on boundary.

The normalization condition requires that

fll/ae%eda = — .

2wepka ek ool

As an orthonormal set, the eigenfunctions are arranged
in accordance with increasing wave number regardless
of type.
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