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The Solution of Guided Waves in Inhomogeneous

Anisotropic Media by Perturbation and

Variational Methods

G. J. GABRIEL, STUDENT MEMBER, IEEE, AND M. E. BRODWIN, MEMBER, IEEE

Ab.sfract-The Schroedinger perturbation theory is extended to

the boundary value problems of guided electromagnetic waves in

cylindrical structures containing inhomogeneous, anisotropic, dis-

sipative media. A genersd variational principle, which reduces to

existing restricted forms valid for nondissipative media, is also

formulated. These approximation methods evolve in a unified man-

ner from the eigenvalue f ormtdation of Maxwell’s equations wherein

the wave numbers are the eigenvalues of a linear operator. The

properties of the media are restricted only by the requirement that

they be independent of the axial coordinate. Perturbation of the

backward wave is considered and the condition for nonreciprocal

waveguides is stated. Modification of the perturbation method for
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application to gyrotropic media is outlined and it is indicated that
convergence of the perturbation terms is improved in those media,
such as the plasma and semiconductor, which permit a Taylor ex-
pansion of the susceptibility tensor in powers of the external field.
Two specific examples, whose exact solutions are known, are in-

cluded to illustrate the application.

1. INTRODUCTION

T

HE PROPAGATION of guided electromagnetic

waves in cylindrical structures containing aniso-
tropic, inhomogeneous media poses formidable

boundary value problems, even under simplifying con-

ditions. In recent years, materials which display induced

anisotropy, namely the gyrotropic media, have received

considerable attention. Because of the special form of

the susceptibility tensors of gyrotropic media, when the

external magnetic field is oriented along one of the co-
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ordinate axes, exact analytical treatment of the bound-

ary value problem in a limited number of geometric

configurations is possible [1 ]– [4 ]. The resulting eigen-

value equations for the allowed wave numbers, how-

ever, are often too complicated to permit explicit ex-

pression of the roots. Numerical or approximate ana-

lytical methods are then used for determining these

roots.

When the media are inherently inhornogeneous and

anisotropic, \vithout dependence on an external influ-

ence such as the magnetic field, the form of the tensors is

not restricted; and when the media are dissipative, the

tensors are necessarily non-I-Iermitian. The mathemat-

ical complexity of the problem then increases sub-

stantially. In this general case, an approximate analysis

of the boundary value problem is simpler than exact

solution, if not in fact the only resort. Even in the

special case of gyrotropic media, under certain circum-

stances and especially when the media are dissipative

such as the semiconductor, an approximate analysis

may yield sufficiently accurate results to diminish the

merit of the exact solution.

It is possible to treat inhomogeneity and anisotropy,

induced and inherent, by viewing the presence of the

media as a perturbation of the empty waveguide. The

formulation of the Maxwell equations as an eigenvalue

problem in operator notation, initiated by Bresler,

Joshi, and Nlarcuvitz [5], [6], enables the extension of

the scalar Schroedinger perturbation theory to problems

of guided waves in cylindrical structures, and permits

the application of the powerful techniq~ues of the spec-

tral theory of operators. A general variational approxi-

mation, which reduces to the restricted form given by

Berk [7] for media possessing Hermitian tensor param-

eters, also follows from the eigenvalue formulation. In

the present perturbation and variaticlnal approxima-

tions, no restrictions are imposed excelpt that the per-

meability and permittivity tensor elements be indepen-

dent of the axial coordinate. These elements may, how-

ever, be functions of the coordinates in the transverse

plane.

Section II of this paper is concerned with the exten-

sion of the scalar perturbation theory to problems of

guided waves. In Section III the general variational

method is considered. Section IV consists of specific

examples to illustrate the application of the perturba-

tion theory. Under consideration are cylindrical wave-

guides, whose axes coincide with the z axis of an ap-

propriate cylindric coordinate system (u I, UZ, z). The

waveguides are assumed to contain linear, inhomoge-

neous, anisotropic, dissipative media characterized by

the permeability and permittivity tensors (dyadics) ~

and z which are independent of z. The walls of the wave-

guides are perfect conductors, and all fields are assumed

to depend on z and the time t thrcjugh the factor

exp ;(KZ —cot).

II. PERTURBATION THEORY

The underlying principle of the perturbation theory

is that the presence of material media may be regarded

as a perturbation of the empty waveguide, prcwided the

media cause sufficiently small effects. The theory evolves

in a unified manner from the formulation of the Maxwell

equations as an eigenvalue problem, under the assurr p-

tion of exponential z and t dependence, wherein the

wave numbers are the eigenvalues of a linear operator.

In this formulation [5], the electromagnetic field is char-

acterized by the six-vector function

E.

[1
%(UI, %) = iH

a
(1)

in terms of which the Maxwell equations take the form

(S – Ka~)@a = O (2)

where

and

[

o
r=

1

i2x I

?%X1 o

and I is the unit dyad, 2 the unit vector along the z

axis, and Vt involves only the transverse coordinates.

Matrix rules of operation are implied, with the provi-

sion that the dot product is used for the product of

dyadics and vectors. The domain of s is specified by

the boundary conditions imposed on @~ at the guide

walls.

The inhomogeneity and anisotropy of the medium

filling the guide are embodied in the operator Q. Since

these properties are conveyed as well by the magnetic

and electric susceptibilities xV, and ~., s can always be

resolved into

$=430+L (3)

where sO is the operator corresponding to free space;

i.e., p and e in (2) are replaced by MOI and COI, and

‘=”[’:’Q (4)

It is important to note that L, which is the perturba-

tion operator, is restricted only by the requirement that

it be independent of z. In addition to its dependence on

the transverse coordinates (ul, 2~2), L may also be a furlc-

tion of a parameter v which accounts for the possible

dependence of the material properties on factors foreign

to the microwave field. For example, in gyrotropic

media, the external magnetic intensity is the paramet~er

which induces the anisotropy.

With the viewpoint that L is a perturbation cm SO, the
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eigehvectors and eigenvalues of .& differ from those of

so by small additive terms. Accordingly, we introduce

the “dummy” parameter A, which will aid in the group-

ing of the perturbation terms and which is equated to

unity in the final results; thus

Q(UI, U2, v) = so + LL(zll, U2, ~) (5)

l’a(ul, Ua, v) = %O(U1, U2) + x x“@an(% z~2,~) (6)
n=l

K.(v) = K.o + ~ ~nKan(V) (7)
n=l

where @~o and K~Oare the zero-order eigenvectors and

eigenvalues of the unperturbed waveguide. In this nota-

tion, the first subscript identifies the eigenvectors

while the second subscript designates the order of the

perturbation. The conditions under which the perturba-

tion analysis is applicable and the rapidity of conver-

gence of the series (6) and (7) can not be resolved in

general terms. These questions are contingent upon the

extent to which the media alter the homogeneous, iso-

tropic structure and, hence, can be settled only when the

conditions in a particular configuration are known.

The recurrence equations which the perturbation

fields must satisfy are obtained by the usual procedure

of substituting (5), (6), and (7) into (2) and grouping

the coefficients of like powers of h. The first three of

these equations are

(so – K.or)% = O (8)

(&o – K.or)@.l = – (L – K.lr)%o (9)

(so – Kaor)% = – (~ – Kdr)% + K.2r@.o. (10)

Once a suitable orthonormal zero-order set is con-

structed, @~fi and K~~ can be determined.

A. The Bi-orthogonal Set

In this section, we briefly review the orthogonality

relations of Bresler, Joshi, and Marcuvitz [5] to the

extent needed for the evaluation of the perturbation

terms and for use in the variational approximation.

Throughout this paper, the symmetric scalar product of

two six-vectors is defined by

(0. ] 06)= ~ (Ed. Ed

where the integration is over

guide.

If @a~ is the eigenvector of

such that

+ ill.. iH~)da (11)

the cross section of the

the adjoint operator &~

(&T + K.r)@.T = () (12)

then the sets {@a~ } and {06} comprise a hi-orthogonal

set with respect to the ‘(weight” operator r; that is,

(o.” I rod) = AT.bad (13)

where IV. is the normalization constant and &P is the

Kronecker delta. The ad joint operator is defined by the

relation

(s’0”] @) = (w I S@)

and it is obtained by replacement of ~ and s in (2) with

VT and ST, these being the transposed dyadics. The

analysis has been restricted to guides with perfectly

conducting walls so that the domains of z and ST are

identical. The possibility of generalized impedance walls

is discussed in the cited references.

It will be noticed that for every eigenvalue Km associ-

ated with @e, an eigenvector of S, there is an eigen-

value —K. associated with @~T, an eigenvector of 3‘. A

negative eigenvalue implies a wave traveling in the op-

posite direction. Hence, @aT is identified as the back-

ward traveling wave in the ‘(adj oint waveguide, ” this

being a waveguide filled with a medium characterized

by the transposed dyadic parameters [8]. In general,

the “adjoint function” @aT has no physical meaning,

and it appears in the problem only as a subsidiary set in

terms of which the bi-orthogonality condition is defined.

In gyrotropic media, however, with the external mag-

netic field oriented along a coordinate axis, the trans-

position of the dyadics (tensors) is physically meaning-

ful as this amounts to a reversal of the magnetic field.

It can be shown that a sufficient condition for –KC to

be an eigenvalue of $, when Kmis an eigenvalue, is that

the operator be symmetric. In the special case when

s = sO, the symmetric operator of the conventional

waveguide, both t K. are eigenvalues. Then O. reduces

to Q.. and @aT to @_.O which are the forward and back-

ward traveling waves, respectively, and are the usual

TE- and TM-type modal functions. The bi-orthogonality

condition then becomes

(o~., I miflo) = + NAP. (1’4)

It is important to note also that

(of., I ro+ao) = o. (15)

By ‘(conventional” waveguide here is meant the empty

waveguide or the \vaveguide completely filled with a

linear, homogeneous, isotropic, dissipative medium.

Since both +Ka are eigenvalues of So, the complete

spectral functions in a transverse plane are Q.. and

@_aO. The usual expansion of fields in cylindrical wave-

guides takes the following form in the six-vector for-

malism

@(tLl, U2, z) = ~ (aae%z@tio — a–.e–i’~oZ@_aO). (16)
a

The coefficients are given by

~a = e-%OZO(@_.O I ro)

La = ei’aO”O(@ao ] ro)

where @ is evaluated at ZOand the set has been assumed

to be normalized. In the summation (16) a special index

has not been used to distinguish degenerate eigenvec-
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tors. When a Kp is n-fold degenerate, the index a is

understood to take successively n values for the same

Kfl. We are no~v in position to evaluate the perturbation

terms.

B. First- and Second- O~de~ Nondegene~ate Pertwbation

Only the first- and second-order terms for a non-

degenerate wave modal function are considered. The

extension to degenerate functions is similar to the

methods of quantum mechanical problems and is not

included here. In the unperturbed state, the waveguide

is assumed to sustain only the forwardl traveling mode

O... Because of the completeness of the zero-order set,

the first-order field may be expanded in the series

When this is substituted in (9) and the bi-orthogonality

relation (14) is used in conjunction with the fact that

all the @a. are in the domain of J30, the eigenvalue per-

turbation and the coefficients a+pl are c[etermined to be

(20)

where

Li,j = (@Lo I L@jo).

The coefficient a., is equated to zero by requiring that

the perturbed eigenvector be normalized to first order

in the parameter [9]. Equation (18) is in agreement

with the viewpoint that, to first order in the nondissipa-

tive medium, the increase in the wave number is pro-

portional to the increase in the stored electromagnetic

energy.

Ih’ith an expansion similar to (17) for the second-order

term, the following is obtained:

(22)

(23)

where the prime on the summation sign denotes exclu-

sion of the term ~ =a.

The perturbation fields have been expanded in the

zero-order eigenvectors which are similar, but not

identical, to the modal functions of the conventional

waveguide. The zero-order eigenvectors do not constit-

ute modes in the usual sense. In the conventional

guide, each modal solution propagates with a distinct

wave number independently of all the others. Here, the

ath perturbed eigenvector is a superposition of the field

distributions of the six components of the mc~dal fur~c-

tions only insofar as the functional dependence on t:he

transverse coordinates is concerned.

C. Perturbation of the Backwa~d Wave

Thus far only the perturbation of the forward travel-

ing wave has been considered. When a backward wave

is present the treatment is not altered markedly. Let

the backward wave be

Any field that exists in a m’aveguide must be an eigen-

vector, or combination of eigenvectors, of the operator

s which properly describes that particular waveguid e.

Thus, @_a must be a solution of

(.J2 + K~r)@_a = O, (2!4)

which differs from (2) in the sign of the eigenvalue.

When the perturbation process is applied to (24), ex-

pressions identical to those for the forward wave are

obtained except that the sign of the index a is changed,

it being understood that K_. O = —K. o.

In general, the wave numbers K.’ and K. are not equal.

Waveguides which display this property are commonly

described as nonreciprocal. A necessary condition for

the nonreciprocity is that & be asymmetrical. The asym-

metry, however, is not sufficient since the equality

Km’ = Km may materialize under special circumstances

even when s and ST are not equal.

It is interesting to examine the first-order perturkla-

tion of Ka’. This is given by

KaI’ = Le,—~ (25)

where the signs of the indices in (18) have been changed.

From the definitions of L,,i and the adjoint operator,

we have

T

&I’ = L,a. (2I5)

Thus, the first-order perturbation of the backward

wave number is identical to the perturbation of the for-

ward wave number in the transposed medium. This

similarity to the transposed medium, however,, does fi!ot

extend to the eigenvectors nor to the higher order per-

turbations of the eigenvalues. This becomes evident by

noting that reversal of the sign of a in (19)–(?3) is not

in general equivalent to replacement of Lt, i with L,,jT.

We note also that when L is symmetric, then K,.I’

reduces to KaI.
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II 1. VARIATIONAL METHOD

The variational method is another approximation

technique which follows readily from the eigenvalue

formulation of the Maxwell equations. Berk [7] has

derived for the wave numbers a restricted vector varia-

tional principle, which is valid only when p and c are

Hermitian, thereby excluding dissipative media. Since

s is necessarily non-Hermitian for dissipative media,

the appropriate general variational principle, which is

obtained from (2) and which is similar to the scalar

form [10 ], is given by

(27)

where Q’ is a solution of the transposed (ad joint) equa-

tion. The fact that K is stationary for all@ and @~ which

are solutions of (2) and (12), respectively, can be veri-

fied by assuming @T initially to be some ~ and showing

that the variation of K vanishes only if

(.$’ + Kr)~ = O. (28)

That is, W must be equal to @’. Furthermore, with the

aid of the general bi-orthogonality relation (13), it is

not difficult to show that K is an upper bound of the low-

est eigenvalue, provided Q is Hermitian. The proof is

inconclusive when Q is not Hermitian.

To prove that the variational expression given by

Berk is contained in the general form (27), we note that

when .43 is Hermitian, then ST* = S and K* =K; and

since I?* = — I’, it follows that O’* is a solution of

(& – Kr)@T* = 0,

Comparison of this with (2) indicates that @T =@*.

Hence, when & is Hermitian, the general expression

(27) assumes the form

~ = (@*I‘Q@)
(0” I I’@)“ (29)

When written in terms of the components, this expres-

sion appears as

K = K.o + L_e,e (32)

which is in agreement with (18).

This perturbation formula for the wave number

reduces to that given by Berk for the special case of

nondissipative media having Hermitian s and ~

tensors. This may be shown readily by writing L_a,e in

terms of the components (E, M) and in accordance

with the definition of Li,j in (20), and noting that

Q–.O = @.o* in nondissipative media.

IV. APPLICATION

In the analysis of guided electromagnetic waves in

anisotropic, inhomogeneous media, it is convenient to

classify problems into three categories depending on the

nature of the media:

1)

2)

3)

Media which are inherently inhomogeneous and

anisotropic; L = L(ti 1, z~J. Examples of these are

the optically active crystals and the homogeneous,

isotropic media partially filling a waveguide.

Media which are inherently homogeneous, iso-

tropic but which become anisotropic, and possibly

inhomogeneous, by induction when subjected to

influences foreign to the microwave fields and

characterized by the parameter v; L = L(v). Ex-

amples of these are the gyromagnetic and gyro-

electric media in the field of an external magnet

and completely filling a waveguide.

Media which are inhomogeneous and anisotropic

both inherently and by induction; L = L(I~ 1, 242,v).

An example of these is the gyromagnetic medium

partially filling a waveguide.

Problems in all three categories maybe treated by the

approximation methods outlined. In the perturbation

analysis of the special case of induced anisotropy, how-

ever, v may supplant A as the perturbation parameter,

provided L is a known continuous function of V. Then

the elements of L can be expanded in a Taylor series

about v = O,

L = ~ vnLn. (33)
n=l

s s
Q (E*. c. E+ H*. ~. H)da+i (lP. V,x E- E* Vtx H)da

~=

s

(30)

(H*. jxE– E*.2x H)da

which is the formula obtained by Berk.

In the first approximation, the variational and per-

turbation methods lead to identical results for the eigen-

values. This can be verified by putting (27) in the alter-

native form

(0’ I &@)+ (Q’ I L@)
K=

(N] m) “
(31)

As “trial” solutions, the normalized zero-order eigen-

vectors @I.O and 0–.0 yield

In this case [category 2)], the perturbation theory is

most successful since rapid convergence can be assured

by the simple expediency of maintaining the values of

v within a prescribed upper bound. It is understood that

0.. and K.. in (6) and (7) are no longer functions of v,

and that the zero-order eigenfunctions belong to the

filled waveguide but in the absence of the induced

anisotropy or inhomogeneity.

Waveguides which are completely filled with a semi-

conductor or plasma, in the field of an external magnet,
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lend themselves especially to this latter mode of anal-

ysis, Here, the external magnetic fielcl intensity is the

perturbation parameter. Since expressions for the con-

ductivity and susceptibility tensor elements as func-

tions of the magnetic field are available, the Taylor

series (33) can be obtained. This method was applied

to the problem of rectangular wavegu[ide filled with a

semiconductor in a transverse magnetic field. The

results, which are in preparation for publication, are in

excellent agreement with experiment and are much

simpler than the exact solution.

In contradistinction, the waveguide filled with a fer-

rite, although in the same category as the plasma and

the semiconductor case, does not fit this approach very

successfully for two reasons. First, both the external

intensity Ho and the internal magnetization MO appear

explicitly in the expressions for the magnetic suscepti-

bility tensor elements. Because of nonlinearity and

hysteresis effects in ferrites, exact analytical relation

between Ho and MO is not known. Serond, the region

of the B-H characteristics that is of greatest interest in

practice is that of saturation where the field intensity

may be too large to be effectively regarded as a small

perturbation. The evaluation of higher order terms be-

comes necessary, and these progressively increase in

complexity. In the ferrite problems, there appears to be

no advantage in the use of v instead of h as the param-

eter.

MTe consider now two problems, whose solutions are

known, for the purpose of illustrating tlhe application of

the perturbation method. The conventional E- and H-

type modal functions are employed as the zero-order

orthonormal set. These functions, together with their

respective normalization constants, are listed in the

Appendix for reference.

A. Dielectric Slab in Rectangular Waveguide

As the first example, consider the rectangular wave-

guide with a homogeneous, isotropic dielectric slab sym-

metrically placed in the manner of Fig. 1. This config-

uration falls in the category of inherent inhomogeneity

[category 1)] and accordingly

We assume that the fundamental norldegenerate HI, o

mode is the only one present in the absence of the di-

electric and proceed to evaluate

K(I, o) I = @~oXc
s

lq,o) .El,(dz (35)

where El, iI is the component of the normalized eigen-

vector. When the appropriate function from the Appen-

dix is introduced and the integration i:$ performed, the

following is obtained:

in Inhomogeneous Anisofropic Media

Fig. 1. Geometry of the problem of the isotropic homogeneous di-
electric slab symmetrical] y placed in rectangular wa reguide. An
example of category 1).

A
HO

-d+ 810- 1 ‘-
~ ‘o~

Fig. 2. Geometry of the ferrite phase shifter in rectangular
waveguide. An example of category 3).

—.—
where kl, o is the cutoff wave number and ku = LO<POCO.

This result, which was obtained by Berk using the vari-

ational method, has been shown by numerical examp [es

to be in excellent agreement with the exact solution [7].

In that earlier variational approximation, x. w as

necessarily assumed to be real, but we assert that such

restriction is not necessary. Complex values of x,, which

account for dissipation, are admissible here.

B. Ferrite Phase Shifter in Rectangular Wavegu ide

As the second example, consider the rectangular

waveguide with a transversely magnetized ferrite slab

placed in the manner of Fig. 2. This problem falls in the

category of inherent inhomogeneity with induced ani:so -

tropy [category 3) ] and, in accordance, with the previ-

ous remarks, A is used as the parameter. Thus,

L(LT, v) =

where K,., for

field, has the

the indicated orientation of the magnetic

form

[
xl o –X2

1Xm=ooo.
1 1

(38)

x2 o xl

Because of the asymmetries of the susceptibility

tensor and the geometric structure, the waveguide is
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nonreciprocal. The significant quantity of interest is the

differential phase shift as defined by Lax, Button, and

Roth [11 ], who have analyzed this problem exactly by

numerical methods. To attack the problem with the

perturbation method, we recall that the first-order per-

turbation of the wave number of the backward wave in

a medium is identical to that of the forward wave in the

transposed medium. Thus,

AK. I = L-a,a — L~m,a. (39)

It is again assumed that the HI,o mode is the only one

present in the absence of the ferrite, so that (39)

reduces to

AK(I, O)I = WI.JO
s

H_II,OJ. (Km – Xn”) .H~,Oda. (40)

Evaluation of the integral yields

AK(LO)I = = [Cos’ l?,,o(ti + d) – COS2 k,,od]. (41)
*o

For the sake of comparison, (41) is expanded in a Tay-

lor series about ?i= O the first term of which is

2ix2
AK(I, O)I = – — kl,OrS sin 2kl,0d. (42)

Xo

This expression differs from the first term of the ex-

pansion obtained from the exact transcendental eigen-

value equation [11 ] by the factor (1 +xJ-l. The ap-

proximation of Lax, et al. [11], is valid for ratios of slab

thickness to waveguide width that do not exceed one

per cent. For greater accuracy, the higher order terms

must be considered, but the evaluation of even the

second-order term is quite involved and it is not in-

cluded here in the interest of brevity.

V. CONCLUSION

It has been shown that the six-vector eigenvalue for-

mulation of Maxwell’s equations for guided waves en-

ables the development of general perturbation and vari-

ational approximations in a concise and unified man-

ner [13 ]. These approximations were shown to reduce

to those given by Berk [7] for nondissipative media. A

large number of problems of inhomogeneous, aniso-

tropic, dissipative media can be treated in principle by

these methods; but the accuracy of the results depends

on the conditions in a particular configuration. From

the practical viewpoint, the perturbation method is

cumbersome if terms of order higher than the second

are required. The method is generally more successful

in problems which permit the expansion of the pertur-

bation operator in a Taylor series as in (33).

APPENDIX

A convenient zero-order orthonormal set is con-

structed from the E and H modal solutions in cylindrical

waveguides. These may be derived from Hertzian po-

tentials of the E and H types [12]. For the H type:

[:1 [

a @lLOvx2#.h
——

a iVX Vxi+ah 1

t)+ah
(V,’ + k.~’)~.h = O; ~ = O on boundary.

The normalization condition requires that

s
ti.hti.hda = – 1

2WPo&hk.h2

where

For the E type:

(Vt2 + k&e’)#.e = O; +~~ = O on boundary.

The normalization condition requires that

As an orthonormal set, the eigenfunctions are arranged

in accordance with increasing wave number regardless

of type.
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